Experiment: Transconductance amplifier

1. Objectives

- Special operating amplifier properties transconductance amplifier;
- Data sheet reading.
- Fast prototyping technology using superstrip prototyping board

2. Components and instrumentation.

- NE5517 integrated circuit (equivalent of LM13600/LM13700),
- superstrip prototyping board (Fig.1),
- laboratory stand (oscilloscope, millimeter, DDS generator, voltage regulator).

ow ow	1 = 2 =		* *			*							*		-		1 1	11 11	-	-			-						::			-									-	-		-				-	7 7	. 4
-			5			01	2				2				20					22				30				35				40				45				50				55				60		
. n	n n				n		n 3			n	m		•	n: 4	-		n	*	*	n :				п		1 11	e .m		n n			#			-					*	n 1	* 11		#	14 3	n #	• #	=	n 1	n n
	16 11	4			-		16.3			1				10. 1	- 11			-			6.46	-	-	40			6 46		11 11			10			-	11		L 11	H	46	11. 1	¥ (4	-	-	# 1	6.9	6 36	-	11 1	ii ai
	11 11			14 24	-		14 1	-	. 14		16	*	N	16 1	1	N	36	-	11	he n	NE	*	16	34	14 1		1 34	-	ni H	N	-	16	N N	-	16	#	* *	1 34	*	*	24 7	ê 31	14	24	16 3		• *	14	34 4	14 14
					-	-		10 9		-	-						11			16 31		-10	-	34	# 1	. 11	6.16		16 31	-	-	11	1		36	11 1	F 18	E 36	#	16	11 1	6 31		#	16 1		E HE	16	36. 3	i 4
4	u u		*	u u	L	*	u d		-	*	#	-	1	4		-	u	-	4 1				14	u			1 11	-	4 4				4 4	*	H		4 4	. 4	*	*	# 1	8. U		1	4 1		i M		u s	* *
		1			-			-			- 0				2							-			-					-			-																	
-	n n		*	1 11	n	森)				-		n	# 3	n 1		-		n	n 9	1 11	n	n		n			n	n)								n 1														1 7
10 1	1. 11		-	1 11		11	16.1			36	-		16			14		#	. 1	¢ 11		*	14	34	16 1	6.96	34	16 1	1 11	1.000		16. 1	1. II			98. Ø	6 11	- 14	36		86 B	E 16		36	46.9	F 31	-	-	# 3	r 11
14	N 11	**	16 1	* **	**	16 1	* *	4 84	14	74	#	#	15 1	4 4	- 26	15	14	14	24 1	4 14	- 14	16	.16	*	# #	1	1	N 1	e H	*	*	H 1	4 14	*	-	# 1	e N	34	**	#	H . A	- 14	#	14	the h	1 H	H	*	N 1	k H
10.1			16. 1			16 1				-	-		16. 1		-	16		#	11)	E 11	-	11	11		16 11	6.94		16.0																						L IF
		u	11 1	F 11		4 1			u	*			u. 1			14	4			1 16	*				u u	i iu		u i	e u	W			1 15	u	16		. 4				u U	1 14	*	44	u u	6 44	M	u	* *	
	2		•			10	1	_	11.	10	2	-	_		20	_	-	-	35	1	_	-	-	30		-	1	33			-	40	_			*	_	-	-	20		-	_	35	-	-	-	99		
1				-				-		-	-		11		-	-	-						-						n) yr				-						*	- 9	-				-					A
	#	-		-	1		-	-	-		-					=	-	-			-	-	#				-				=							-	#		= =						*		-	-

Fig.1 Yellow lines show connected holes.

3. Preparation.

The estimated time to prepare for classes is 3 to 6 hours.

3.1. Reading

- [1] Lecture notes ("Measurement circuits and systems" and "Front-end circuits"),
- [2] W. Tietze, Ch. Schenk, Electronic circuits Handbook for Design and Applications, Springer, 2008. Chapters 5.3 to 23.6
- [3] Data sheets of NE5517 and LM13600.

3.2. Problems

- 1. Name different types of OP-AMP (Chapter 5 of [2]) ?
- 2. What is the essence of transconductance amplifier?
- 3. What are the applications for transconductance amplifier ?

3.3. Detailed preparation

From data sheet [3,4], choose one of application of transconductance amplifier: Voltage controlled amplifier.

- 1. Amplitude modulator
- 2. Voltage controlled low-pass filter
- 3. Voltage controlled oscillator
- 4. Any other application taken from data sheet or other sources (consult with tutor).

Sketch in Your "laboratory copybook", a diagram of prototyping board connections for chosen circuit.

4. Contest of rapport

According to chosen circuit:

- Voltage controlled amplifier: Gain vs. frequency graph (gain in dB, logarithmic frequency axis) for three different control currents; in one case graph of phase vs. frequency.
- Amplitude modulator:
 Oscilloscope screen shot of modulated signal for sine, triangle and square modulating signals and screen shots of FFT analysis for the three above cases.
- 3. Voltage controlled low-pass filter: Gain vs. frequency graph (gain in dB, logarithmic frequency axis) for three different control currents; in one case graph of phase vs. frequency.
- 4. Voltage controlled oscillator: Graph of frequency vs. controlled signal; oscilloscope screen shot of output signal.

5. Appendixes: