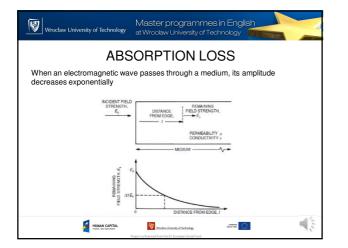
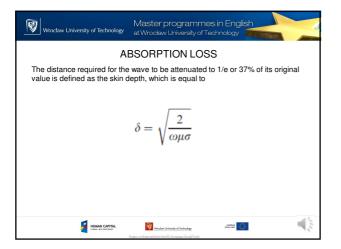
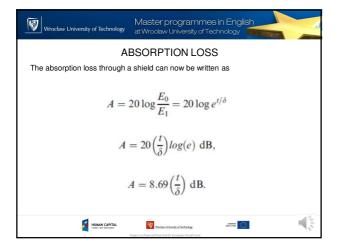


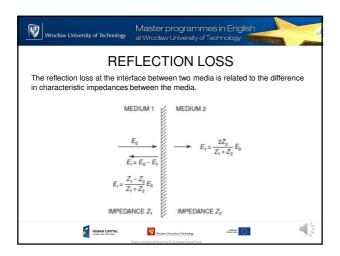
CHARAC	CTERISTIC IMPE	EDANCES
Material	Relative conductivity σ_r	Relative permeability µ,
Silver	1.05	1
Copper-annealed	1.00	1
Gold	0.7	1
Chromium	0.664	1
Aluminum (soft)	0.61	1
Aluminum (tempered)	0.4	1
Zinc	0.32	1
Beryllium	0.28	1
Brass	0.26	1
Cadmium	0.23	1
Nickel	0.20	100
Bronze	0.18	1
Platinum	0.18	1
Magnesium alloy	0.17	1
Tin	0.15	1
Steel (SAE 1045)	0.10	1000
Lead	0.08	1
Monel	0.04	1
Conetic (1 kHz)	0.03	25,000
Mumetal (1 (kHz)	0.03	25,000
Stainless steel (Type 304)	0.02	500

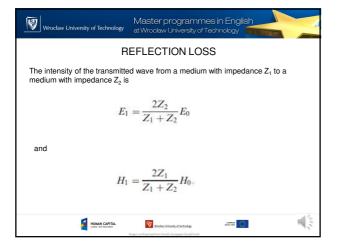




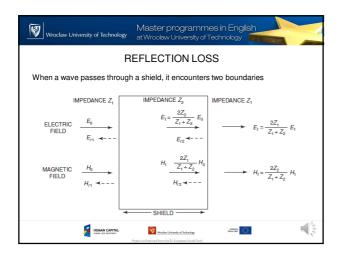


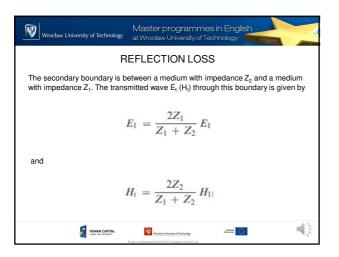
	faster programmes in English Wrocław University of Technology
ABS	ORPTION LOSS
This decay occurs because curre and heating of the material. Ther	ents induced in the shield produce ohmic losses efore, we can write
$E_1 =$	$E_0 e^{-t/\delta}$
$H_1 =$	$H_0 e^{-t/\delta}$
where $E_1(H_1)$ is the wave intensi	ity at a distance t within the shield.
HUMAIN CAPITAL Index-act workser	The second secon

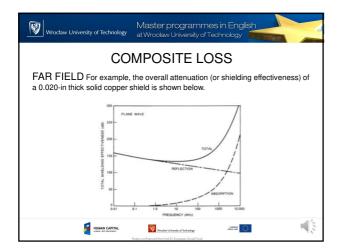




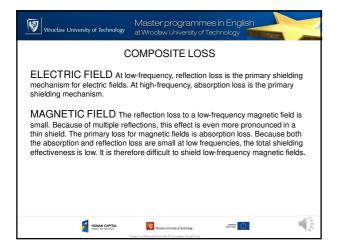
Wrocław University of Technology	Master programmes in English at Wrocław University of Technology				
ABSORPTION LOSS General expression for absorption loss:					
A = 0.13	$32t\sqrt{f\mu_r}\sigma_r$ [dB]				
In this equation, t is equal to the thickness of the shield in mm.					
	Venderer Urbansky af Rechnelgy				

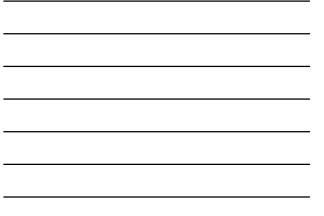


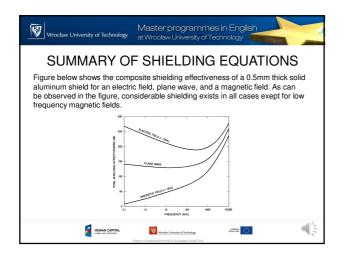


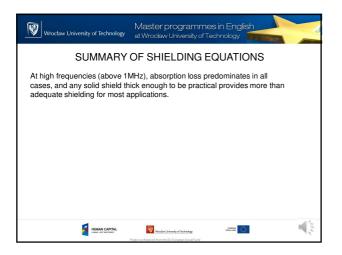


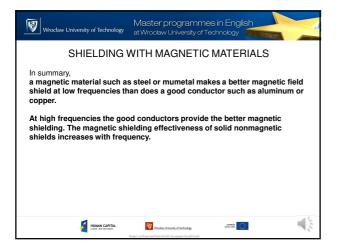
_		~~	
R	REFLECTION LO	SS	
Material	Relative conductivity σ_r	Relative permeability µ,	
Silver	1.05	1	
Copper-annealed	1.00	1	
Gold	0.7	1	
Chromium	0.664	1	
Aluminum (soft)	0.61	1	
Aluminum (tempered)	0.4	1	
Zinc	0.32	1	
Beryllium	0.28	1	
Brass	0.26	1	
Cadmium	0.23	1	
Nickel	0.20	100	
Bronze	0.18	1	
Platinum	0.18	1	
Magnesium alloy	0.17	1	
Tin	0.15	1	
Steel (SAE 1045)	0.10	1000	
Lead	0.08	1	
Monel	0.04	1	
Conetic (1 kHz)	0.03	25,000	
Mumetal (1 (kHz)	0.03	25,000	
Stainless steel (Type 304)	0.02	500	

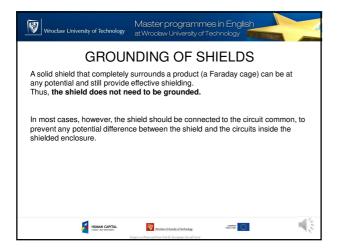



Wrocław Ur		er programn claw University o			
G	eneralized Equa	ation for F	Reflecti	on Loss	6
Neglecting n written as	nultiple reflections a gen	eralized equati	on for refl	ection loss	can be
	R = C + 10	$\log\left(\frac{\sigma_r}{r}\right)$	$\left(\begin{array}{c} 1 \end{array} \right)$)	
	K = C + 10	(μ_r)	$(\mathbf{f}^n r^m)$	/	
	onstants C, n and m are nagnetic fields, respectiv	listed below fo			ic
	onstants C, n and m are	listed below fo			ic
	onstants C, n and m are nagnetic fields, respectiv	listed below fo	or plane w	aves, electr	ic
	onstants C, n and m are nagnetic fields, respectiv Type of Field	listed below for vely.	or plane w	aves, electr	ic
	onstants C, n and m are nagnetic fields, respectiv Type of Field Electric field	listed below for vely.	or plane w	aves, electr	ic









10

