

Wrock	Woodaw University of Technology Q - point vs. application					
	Application	I _c (Q)	V _{CE} (Q) [V]			
	Low noise l.f. amps	20-200 [uA]	1-5			
	Small signal l.f. & h.f. amps	0.2-2 [mA]	3-10			
	High input impedance amps	0.1-10 [uA]	0.7-5			
	Broadband h.f. amps; low noise h.f	5-50 [mA]	5-10			
	Midium power l.f. amps	0.1 -10 [A]	5-15			
	High power l.f. amps	2-10 [A]	20-200			
	high power h.f. & special amps	2-10 [A]	20-1200			
			4/3			

Woodaw University of Technology
$$r_d = \frac{dU_D}{dI_D} \bigg|_{I_D = I_Q} = \frac{\phi_T}{I_D + I_s} \approx \frac{\phi_T}{I_D}$$

$$r_d = \frac{26mV}{I_D} = \frac{26mV}{1mA} = 26\Omega \quad for \ I_D = 1mA; \ n = 1$$

$$r_d = \frac{26mV}{0.1mA} = 260\Omega \quad for \ I_D = 100\mu 4; \ n = 1$$

$$r_d = \frac{26mV}{10\mu A} = 2.6k\Omega \quad for \ I_D = 10\mu A; \ n = 1$$
 HINT: The linear model is satisfactory for amplitudes up to 25mV

CE-CC-CB comparison							
		R_B =	$= R_{B1} \parallel R_{B2} r_{be} / \beta = 1 / g_m$				
Para-		configuration					
meter	CE	СС	СВ				
$A_V = \frac{u_{be}}{u_L}$	$-\beta \frac{R_C \parallel R_L \parallel r_{ce}}{r_{be}}$	$\frac{R_E \parallel R_L \parallel r_{ce}}{R_E \parallel R_L \parallel r_{ce} + r_{be} / \beta}$	$-\beta \frac{R_C \parallel R_L \parallel r_{ce}}{r_{be}}$				
	$\frac{-R_C \parallel r_{ce}}{R_C \parallel r_{ce} + R_L} \beta$	$\frac{R_E}{R_E + R_L} \beta$	$\frac{-R_C \parallel r_{ce}}{R_C \parallel r_{ce} + R_L}$				
$r_{in} = \frac{u_{be}}{i_{b(e)}}$	$R_{\scriptscriptstyle B} \parallel r_{\scriptscriptstyle be}$	$(\beta(R_E \parallel R_L) + r_{be}) \parallel R_B$	$\left(rac{r_{be}}{oldsymbol{eta}} ight)\parallel R_{\scriptscriptstyle E}$				
$r_{out} = \frac{u_{out}}{i_{c(e)}}$ (e) - for CB	$R_C \parallel r_{ce}$	$\left(\frac{\left(R_{B} \parallel R_{G}\right) + r_{be}}{\beta}\right) \parallel R_{E}$	$R_C \parallel r_{ce}$				

		CE-CC-CB al comparis	on
Para-	configuration		
meter	CE	СС	СВ
$A_V = \frac{u_{be}}{u_L}$	High	<1	High
$A_I = \frac{i_b}{i_L}$	High	High (10-200)	<1
$r_{in} = \frac{u_{be}}{i_{b(e)}}$	Medium	High (10k-1M)	Low (10Ω-500Ω)
$r_{out} = \frac{u_{out}}{i_{c(e)}}$ (e) - for CB	Medium	Low (10Ω-500Ω)	Medium

Summary • AC vs. DC load line • Ebers - Moll BJT model • linear transistor model • voltage gain, effective voltage gain • CE, CC, CB amps parameters

Problems Estimate voltage gain and effective voltage gain for given diagram of BJT CE amplifier (known parameters: R_g,R_{B1},R_{B2}, R_C, R_L, β, φ_T, I_{CQ}, U_{CEQ}). What is the "emitter follower" and what characteristic parameters it has? Compare BJT amplifier in CE, CB, CC configurations.