

m						
V						
iene Macing						
	MOSE	FT sw	itches	over	view	
				Valtage	Dowar	Pasponse
Туре	facturer	Function	resistance	range	dissipation	time
Without level	ranslator, unpr	otected				
74 HC 4016	Philips	$4 \times SPST$	65 Ω	012V	10 µW	10 ns
74 HC 4053	Philips	$3 \times SPDT$	60Ω	012 V	10 µW	20 ns
74 HC 4066	Philips	$4 \times SPST$	35 Ω	012 V	10 µW	20 ns
MAX 4522	Maxim	$4 \times SPST$	60Ω	012V	10 µW	10 ns
SD 5000	Vishay	$4 \times \text{SPST}$	30 Ω	$\pm 10 \text{ V}$	10 µW	1 ns
Fast switching	(< 100 ns)					
HI 201 HS	Intersil	$4 \times SPST$	30 Ω	$\pm 15 V$	120 mW	30 ns
74 HC 4316	Philips	$4 \times SPST$	65 Ω	± 5V	10 µW	20 ns
DG 611	Vishay	$4 \times \text{SPST}$	18Ω	± 5V	20 µW	15 ns
Low power (<	: 100 µW) and	low on resistan	$ce (\leq 100 \Omega)$			
ADG 511	Analog D.	$4 \times SPST$	30 Ω	$\pm 20 V$	20 µW	200 ns
DG 403	Intersil	$2 \times SPDT$	30 Ω	$\pm 15 V$	·20μW	150 ns
DG 411	1. tersil	$4 \times SPST$	30 Ω	$\pm 15 V$	30 µW	150 ns
LT 221	Lin. Tech.	$4 \times SPST$	70Ω	$\pm 15 V$	10 µW	250 ns
MAX 351	Maxim	$4 \times SPST$	22 Ω	$\pm 15 V$	35 µW	150 ns
DG 405	Vishay	$4 \times SPST$	20Ω	$\pm 15 V$	10 uW	100 ns

V							
	MO	SFET	switch	es ov	ervie	w con	t.
Low o	on resistar	nce ($\leq 100 \Omega$))			10 11	200
ADG	211	Analog D.	$4 \times \text{SPST}$	60 Ω	± 15 V	10µW	200 ns
ADG	333	Analog D.	$4 \times \text{SPDT}$	20 \Q	$\pm 15 V$	Tμw	150 ns
ADG	451	Analog D.	$4 \times SPST$	5 12	$\pm 15 v$	20 µ W	00 ns
MAX	4602	Maxim	$4 \times \text{SPST}$	2 \Q	$\pm 15 V$	Iμw	180 hs
CDG	271	Vishay	$4 \times \text{SPST}$	32 \Q	$\pm 15 v$	150 mw	50 ns
High	voltage ()	> + 30 V					
HV 3	48	Supertex	$2 \times SPST$	35 Ω	$\pm 50 V$	10 mW	500 ns
		Superior					
High	off attenu	tation ($\geq 40 d$	B @ 100 MHz)			76 31	00
HI 22	2	Intersil	$2 \times \text{SPST}$	35 \$2	$\pm 15 V$	/5 mW	90 ns
MAX	4545	Maxim	$2 \times SPST$	50 \$2	± 5V	1 µ w	20
DG 5	40	Vishay	$4 \times \text{SPST}$	30	± 6V	60 m w	30 ns

9							
lee uity no mingr							
ſ	۸.	aalogi		احتط	ovoro		
	A	laiogi	le mu	πτιρι	exers		
Туре	Manu- facturer	Function	On resistance	Voltage range	Power dissipation	Response time	Data latch
Fast switchin	$g (\le 100 \text{ns}),$	unprotected					
74 HC 4051	Philips	1×8	60Ω	$\pm 5 V$	10 µW	20 ns	no
74 HC 4052	Philips	2×4	60 Ω	$\pm 5 V$	10 µW	20 ns	no
74 HC 4053	Philips	3×2	60Ω	$\pm 5 V$	10 µW	20 ns	no
Low power (≤ 100 µW)						
DG 406	Maxim	1×16	80Ω	$\pm 15 V$	20 uW	300 ns	no
DG 408	Maxim	1×8	80Ω	$\pm 15 V$	20 uW	200 ns	no
DG 685	Vishay	1×8	55 Ω	$\pm 15 V$	10 µW	160 ns	yes
High input pr	otection (> $=$	E30V)					
MAX 378	Maxim	1 × 8	2 kΩ	$\pm 15 V$	2 mW	300 ns	no
DG 458	Intersil	1×8	80 Ω	$\pm 15 V$	5 mW	200 ns	no
High voltage	(> + 30 V)						
HV 22816	Supertex	1×8	22 Ω	$\pm 80 \mathrm{V}$	2 mW	4 us	ves
HV 22816	Supertex	1 × 8	22 Ω	$\pm 80 V$	2 mW	4 µs	yes

	Analo	gue r	nultip	lexer	s con	t.	
High off atter MAX 310 DG 536 DG 538	nuation (≥ 40 Maxim Vishay Vishay	dB @ 100 M 1 × 8 1 × 16 2 × 4	Hz) 150 Ω 55 Ω 45 Ω	$\pm 12V$ 010V $\pm 6V$	1 mW 75 μW 10 mW	300 ns 200 ns 200 ns	no yes
Universal typ ADG 408 ADG 526 DG 408 MAX 308	es Analog D. Analog D. Intersil Maxim	$1 \times 8 \\ 1 \times 16 \\ 1 \times 8 \\ 1 \times 8$	80 Ω 280 Ω 80 Ω 60 Ω	± 15 V ± 15 V ± 15 V ± 15 V ± 15 V	2 mW 10 mW 7 mW 300 µW	200 ns 200 ns 200 ns 200 ns	no yes no no

E State Bankar State Casta	
	SH parameters
	Aquisition time (capacitor SMALL) $t_{AC} = R_s C \cdot \begin{cases} 4.6 & 1\% \text{ of error} \\ 6.9 & 0.1\% \text{ of error} \end{cases}$
	Aperture delay (capacitor should be SMALL) Aperture jitter Hold step (capacitor should be LARGE) $\Delta U_o = \frac{C_s}{C} \Delta U_C$
	Setting time (capacitor should be SMALL) Feedthrough (capacitor should be LARGE) Droop (hold decay) (capacitor should be LARGE) $\Delta U_o = \frac{I_d}{C} \Delta t$

Nites at the second							
	S	iH wit	:h an	integ	rator		
Туре	Manu- facturer	Hold capacitor	Setting time	Accuracy	Slew	Droop	Tech- nology
LF 398 LF 398 AD 585 SHC 5320 AD 682 ² AD 682 ² AD 684 ⁴ AD 783 LF 6197 AD 9100 RTH 050	various various Analog Dev. Burr Brown Analog Dev. Analog Dev. Analog Dev. National Analog Dev. Rockwell	10 nF 1 nF 100 pF* 100 pF* * * * * * * * * * * * * *	20 µs 4 µs 3 µs 1.5 µs 0.6 µs 0.6 µs 0.2 µs 0.2 µs 16 ns 0.2 ns	10 bit 10 bit 12 bit	0,5 V/µs 5 V/µs 10 V/µs 45 V/µs 60 V/µs 60 V/µs 50 V/µs 50 V/µs 850 V/µs 40 kV/µs	3 mV/s 30 mV/s 0,1 V/s 0,1 V/s 10 mV/s 10 mV/s 10 mV/s 20 mV/s 1 kV/s	Bifet Bipolar Bipolar Bimos Bimos Bimos Bimos Bifet Bipolar GaAs

$$\underbrace{\textbf{Multiplying converters}}_{u_{out}} = U_{ref} \frac{L}{2^n} \\ \bigcup_{ref} = u_{in} \\ \end{aligned} \Rightarrow u_{out} = u_{in} \bullet \frac{L}{2^n} \\ \underbrace{\textbf{L}}_{ref} = u_{in} \\ \end{aligned}$$
Every of till mentioned converters where multipying converters

FEATURES 4 mA-20 mA, 0 mA-20 mA or 0 mA-24 mA Current Output 16-Bit Resolution and Monotonicity ± 0.012% Max Integral Nonlinearity ± 0.05% Max Offset (Trimmable)

±0.012% Max Integral Nonlinearity ±0.05% Max Offset (Trimmable) ±0.15% Max Total Output Error (Trimmable) Flexible Serial Digital Interface (3.3 MBPS) On-Chip Loop Fault Detection On-Chip 5 V Reference (25 ppm/°C Max) Asynchronous CLEAR Function Maximum Power Supply Range of 32 V Output Loop Compliance of 0 V to V_{CC} – 2.5 V 24-Lead SOIC and PDIP Packages

Converter AD5337	,-8,-9
EATURES	
D5337	
2 buffered 8-bit DACs in 8-lead MSOP	
D5338, AD5338-1	
2 buffered 10-bit DACs in 8-lead MSOP	
D5339	
2 buffered 12-bit DACs in 8-lead MSOP	
ow power operation: 250 mA @ 3 V, 300 mA @ 5 V	
-wire (I²C°compatible) serial interface	
.5 V to 5.5 V power supply	
uaranteed monotonic by design over all codes	
'ower-down to 80 nA @ 3 V, 200 nA @ 5 V	
power-down modes	
ouble-buffered input logic	
Output range: 0 V to Vers	
ower-on reset to 0 V	
imultaneous update of outputs (LDAC function)	
oftware clear facility	
Data readback facility	
In-chip rail-to-rail output buffer amplifiers	
emperature range: -40°C to +105°C	

1									
ad beloning	Co	on	ve	rte	er	AD)53	337	,-8,-9
. L.			A Grade	,		B Grade	•		
	Parameter'	Min	Тур	Max	Min	Тур	Max	Unit	B Version ² Conditions/Comments
	DC PERFORMANCE ^{3, 4}								
	AD5337								
	Resolution		8			8		Bits	
	Relative Accuracy		±0.15	±1		±0.15	±0.5	LSB	
	Differential Nonlinearity		±0.02	±0.25		±0.02	±0.25	LSB	Guaranteed monotonic by design over all codes
	AD5338								
	Resolution		10			10		Bits	
	Relative Accuracy		±0.5	±4		±0.5	±2	LSB	
	Differential Nonlinearity		±0.05	±0.5		±0.05	±0.50	LSB	Guaranteed monotonic by design over all codes
	AD5339								
	Resolution		12			12		Bits	
	Relative Accuracy		±2	±16		±2	±8	LSB	
	Differential Nonlinearity		±0.2	±1		±0.2	±1	LS8	Guaranteed monotonic by design over all codes
	Offset Error		±0.4	±3		±0.4	±3	% of FSR	
	Gain Error		±0.15	±1		±0.15	±1	% of FSR	
	Lower Deadband		20	60		20	60	mV	Lower deadband exists only if offset error is negative
	Offset Error Drift ⁸		-12			-12		ppm of FSR/°C	
	Gain Error Drift ⁶		-5			-5		ppm of FSR/°C	
	Power Supply Rejection Ratio ⁸		-60			-60		dB	$\Delta V_{00} = \pm 10\%$
	DC Crosstalk ⁴		200			200		μV	$R_{\rm L} = 2 k\Omega$ to GND or $V_{\rm EP}$

EXAMPLE CONVERTIGN AND A STREET OF A STREE

APPLICATIONS Ultrahigh Resolution Color Graphics Image Processing Drives 24-Bit Color 2K × 2K Monitors

Summary Switches SH/TH circuits Resolution/sampling noise

- convertion principle
 - parallel
 - weighting
 - counting

V

- ladder network
- convertion errors (static and dynamic)

Test questions example:

- What are the basic properties of switches ?
- Enumerate types of electronic switches ?
- What is the difference between track&hold (TH) circuit and sample&hold (SH) ?
- What are the basic principles od DA converters ?
- What is the relationship between Channel Capacity and SNR/BW ?